Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 36(4): 333-345, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31823302

RESUMO

Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.


Assuntos
Epilepsia , Hipocampo/diagnóstico por imagem , Síncrotrons , Animais , Epilepsia/diagnóstico por imagem , Hipocampo/patologia , Imageamento Tridimensional , Masculino , Ratos , Ratos Sprague-Dawley
2.
J Synchrotron Radiat ; 26(Pt 6): 2024-2032, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721747

RESUMO

Conventional imaging methods such as magnetic resonance imaging, computed tomography and digital subtraction angiography have limited temporospatial resolutions and shortcomings like invasive angiography, potential allergy to contrast agents, and image deformation, that restrict their application in high-resolution visualization of the structure of microvessels. In this study, through comparing synchrotron radiation (SR) absorption-contrast imaging to absorption phase-contrast imaging, it was found that SR-based phase-contrast imaging could provide more detailed ultra-high-pixel images of microvascular networks than absorption phase-contrast imaging. Simultaneously, SR-based phase-contrast imaging was used to perform high-quality, multi-dimensional and multi-scale imaging of rat brain angioarchitecture. With the aid of image post-processing, high-pixel-size two-dimensional virtual slices can be obtained without sectioning. The distribution of blood supply is in accordance with the results of traditional tissue staining. Three-dimensional anatomical maps of cerebral angioarchitecture can also be acquired. Functional partitions of regions of interest are reproduced in the reconstructed rat cerebral vascular networks. Imaging analysis of the same sample can also be displayed simultaneously in two- and three-dimensional views, which provides abundant anatomical information together with parenchyma and vessels. In conclusion, SR-based phase-contrast imaging holds great promise for visualizing microstructure of microvascular networks in two- and three-dimensional perspectives during the development of neurovascular diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Microvasos/diagnóstico por imagem , Síncrotrons , Animais , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Imageamento Tridimensional/métodos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...